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0. Abstract 
 

This paper examines the role of networks in establishing and sustaining industrial sectors 

and clusters, the consequent behaviours of those clusters and their participants, and 

ultimately the implications of the extended enterprise for participants, regulators and 

researchers. 

 

In the first section I reflect on the nature of network driven dynamics and explore the 

tools and techniques that might be used to test for them. I then investigate the testability 

of various theories of network-enabled sustainability and network-driven growth, 

innovation and information exchange. Finally I examine the implications for both 

research and practice. 

 

Throughout the paper a variety of tools and techniques are illustrated with reference to a 

specific study of the petrochemicals industry in Western Europe. The results demonstrate 

that, despite being characterised as mature, the petrochemicals industry continues to 

evolve and its constituent companies and locations are still actively co-evolving within it. 

I establish the interplay between the roles of local and long-range networks for the 

diffusion of knowledge and innovation within the industry. The clear implication is that 

companies need to be well connected into the industry’s network and that this is best 

achieved through a diverse and disparate geographical presence.  

 

This study demonstrates the generic applicability of network and co-evolutionary theories 

to an examination of industrial sectors, and tests the viability of various social network 

analysis tools and techniques that might be used to illustrate the associated structures and 

dynamics. 
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1. Introduction 
 

Traditionally, most thinking about regional economic geography has fallen into three 

broad bodies of literature (MacKinnon et al 2002, Storper 1997). 

 

The institutional school of regional economic geography began with Marshall’s (1919) 

introduction of the idea of geographical specialisation generating, and generated by, a 

local “industrial atmosphere” which institutionalised custom, tradition and practice in a 

unique set of social and cultural norms. Piore & Sabel (1984) produced a contemporary 

interpretation of the idea with flexible specialisation based on the allocation of 

capabilities and resources forged in local historical, institutional and social structures. 

The American school attempted to address the problem of spontaneous development with 

a model that combined a strong academic centre with a political coalition that proactively 

encouraged entrepreneurship in science-based clusters. An alternative European school 

developed the concept of the milieu which is represented through a network metaphor, 

but is intangible in most of the literature. 

 

Rational-economic thinking is epitomised by the California school’s postulation that 

disintegration and specialisation is the natural response to risk in dynamic markets 

(Storper 1997:9, MacKinnon et al 2002:295), and that regional agglomeration is the 

resultant effect of a minimisation of transaction costs. These dynamics are amplified for 

mature industries where attention is focussed on the incremental improvement of 

products and the minimisation of costs.  

 

Since the 1990s innovation and evolution have been highlighted by the identification of 

increasing returns available from “untraded interdependencies” (Storper 1997:5) which 

“are seen as key sources of learning which enable certain regions to respond and adapt 

effectively to changes in the external market environment” (MacKinnon et al 2002:301).  
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1.1 The Relevance of the Petrochemicals Industry 

The petrochemicals industry in Western Europe is characterised by a large degree of 

fragmentation, but without a correspondingly high degree of specialisation. It follows 

that, despite its typical characterisation as a mature, or even declining industry, 

transaction cost minimisation cannot be the dominant dynamic in the geographical 

concentration of the industry. 

 

All petrochemicals are produced from a common family of feedstocks, forming a number 

of inter-connected production chains (figure 1.1). While many operators in the European 

industry produce products at most points along these production chains, they surprisingly 

rarely operate complete chains at a single location. Instead, their facilities are integrated 

into production chains that include other operators, and are spread across a number of 

locations. The geographical analogue is that complete, integrated production chains can 

often be found at discrete operating locations, but these are rarely operated by a single 

owner.  

 

 

 
Figure 1.1 – Generic Production Map for the Western European Petrochemicals Industry  
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1.1.1  Analysis of the Industry 

The ownership structure, generic production chain definition and product stream location 

information were analysed using UCInet (Borgatti et al 2002). This generated networks 

representing the individual production chains for each of the 140 companies and 167 

locations. For example, figure 1.2 shows the production chain for Dow. The circles 

represent specific products, and the arrows link feedstocks to the products that they 

produce. 

 

 

 
Figure 1.2 – Production Chain Map for Dow  

 

I then divided these production chains according to their location to identify the fully 

integrated (i.e. by ownership and location) production fragments. The largest of these 

fragments was measured to give an indication of the size of the largest fully integrated 

complex for each company. Figure 1.3 shows the production fragment map for Dow. The 

circles are individual product streams (i.e. it identifies products from specific production 

plants), and it is clear that there are 7 geographically distinct production chain fragments 

(represented by different colours in the diagram). 
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Figure 1.3 – Production Fragment Map for Dow 

 

 

 

1.1.1.1 Production Chain Integration  

Figure 1.4 shows the size of the largest production component against the total number of 

product streams for each company (fig. 1.4) and for each location (fig. 1.5). It is clear that 

for virtually all companies and location, irrespective of size, the vast majority of the 

products that they produce can be integrated into a single production chain (i.e. the trend 

line has a gradient close to 1). 
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Figure 1.4 – Largest Component Size by Total Product Streams (Companies) 
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Figure 1.5 – Largest Component Size by Total Product Streams (Locations) 

 

 

The linear increase in the number of products with the number of product streams 

indicates that the size of the larger companies and locations is a consequence of 

diversification rather than specialisation. 

 

1.1.1.2. Fragmentation 

Figure 1.6 shows the impact of location on company production chains, and figure 1.7 the 

analogous impact of ownership on production sites. The apparently contiguous 

production chains are distributed geographically in such a way that their contiguity is 

broken. In both cases, no component is larger than 30 product streams, and relatively 

small companies operate with components of this size1. The number of products within a 

fragment also has an upper limit of around 20. 
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Figure 1.6 – Largest Fragment Size by Total Product Streams (Companies) 

 
1 An effort to fit a trend line gives R2=0.75, but is influenced by the high number of very small companies, and it is 

clear to the naked eye that any correlation breaks down for the larger companies. 
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Figure 1.7 – Largest Fragment Size by Total Product Streams (Locations) 
 

 

1.1.1.3. Degrees of Integration and Fragmentation 

I created two metrics that describe the extent of the fragmentation observed in the data. 

The Product Integration Factor is simply the proportion of all of the product streams for 

each company (or location) that are part of a production chain component, irrespective of 

location. The Fragmentation Factor is the proportion of the product streams that are part 

of a fully integrated ownership (or location) fragment. The higher the value of each of 

these factors, the greater is the level of integration2.  
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Figure 1.8 – Product Integration Factor by Total Product Streams (Companies) 

 
2 In Dow’s case the Product Integration Factor is 0.98, because all but 2 of its 101 product streams are integrated into 

one of the production components that are shown in figure 1.2. Dow’s Fragmentation Factor is 0.66, because when 

location is considered, only 67 of the total 101 product streams are integrated into the production fragments illustrated 

in figure 1.3. The remaining 34 product streams are isolated by geography from the production components that they 

were members of. 
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Figure 1.9 –Product Integration Factor by Total Product Streams (Locations) 

 

There is a wide diversity in the Product Integration Factors (figs 1.8 and 1.9) and 

Fragmentation Factors (figs 1.10 and 1.11) amongst the smaller companies and 

locations, but as they grow and become more diverse they converge to a surprisingly 

consistent level of integration. Virtually every product stream that any company or 

location produces is connected to every other through their production chains (the 

Product Integration Factor tends towards 1). But, far fewer are locally integrated – the 

companies appear to converge to a common level of local integration at about 70% of all 

of their product streams, and locations to a common level of local integration at about 

80% of all of their product streams. So, locations seem to be slightly more integrated than 

companies. 
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Figure 1.10 – Fragmentation Factor by Total Product Streams (Companies) 
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Figure 1.11 – Location Fragmentation Factor by Total Product Streams 

 

 

1.1.2  Implications 

There is a large degree of fragmentation (i.e. low values for the maximum fragment size 

and fragmentation index), but without a correspondingly high degree of specialisation 

(the number of products increases linearly with the number of production streams), 

within the petrochemicals industry. As such, it seems likely that an investigation of the 

operation of networks as adaptive systems for the promotion of innovation and learning 

will be insightful in helping to rationalise the industry’s structural form. This in turn 

should enlighten a more generic consideration of these concepts, not least because of the 

clear integration benefits and the contained and discrete nature of the petrochemicals 

sector. 
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2. Network Driven Dynamics 
 

“What the science of networks can do, even now, is give us a different way to think about 

the world, and in so doing help us to shed new light on old problems” (Watts 2003:16). 

 

“Immanuel Kant, writing more than two centuries ago, saw organisms as wholes. The 

whole existed by means of the parts; the parts existed both because of and in order to 

sustain the whole” (Kauffman 1995:69). Kauffman explains that while the rules of 

evolution drive the development of a network’s structure, random, exogenous events also 

play a part. In a similar fashion Kogut (2000) makes the distinction between “emergence 

and intentionality” in determining network structure. The network has no authority 

relationship that allows it to impose its structure on its participants. Its structure is “an 

emergent outcome generated by rules that guide the cooperative decisions of firms in 

specific competitive markets. The observed differences in the patterns of cooperation 

between industries are not happenstance. They reflect rather the implicit operation of 

these cooperative rules and the competing visions that come to shape a 

network……..structure is emergent in the initial conditions of a specific industry” (Kogut 

2000:405). 

 

It is not only the network that evolves. The firms within the network are also engaged in a 

co-evolutionary journey within their regional and/or market environments: “the dialectic 

between specific markets and individual firm competence drives a co-evolution that 

enjoys a reflection in the structure of the network” (Kogut 2000:412). Hence there is no 

single normative, unique path, because decisions and developments at a micro-level 

impact on the macro-structure and vice versa. One example might be that the network 

‘learns’ how to supply inputs at a lower cost than any individual firm can achieve (ibid.). 

This capability, combined with the on-going development and enhancement of trust 

between the participants (Staber 2001), significantly reduces the benefits and incentives 

associated with vertical integration. 

 

 

 

2.1 Consideration of Diversity 

An evolutionary theory of industrial development (e.g. Kauffman 1995, Kogut 2000) 

would predict a correlation between diversity and success. Larger companies and 

locations should exhibit higher levels of diversity, in marked contrast to the specialisation 

that gives rise to economies of experience and scale.  

 

Stirling (2004) offers an unusually rich characterisation of diversity: 

Variety indicates the number of categories into which the property under 

consideration can be segmented.  

Balance measures the relative apportionment of that property between these 

categories.  

Disparity assesses the extent to which the categories themselves are distinct.  
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I developed metrics that quantified each of these dimensions as exhibited by the 

companies and locations (table 2.1). The diversity of companies was considered in terms 

of their geographical spread, and of locations in terms of their ownership. In both cases I 

also looked at their production portfolio diversity. These were tested for their correlation 

with co-evolutionary success as indicated by growth and scale3.  

 
 Companies Locations 
Geographical Diversity 

- Variety 
 

No. operating locations N/A 

- Balance 

1−










sizelocationAverage

locationestarglofSize
 

N/A 

- Disparity Bespoke disparity index4 N/A 
 

Ownership Diversity 

- Variety N/A No. of ownership fragments 
 

- Balance N/A 

1−








sizefragmentAverage

fragmentestarglofSize
 

- Disparity N/A Bespoke disparity index5 
 

Production Portfolio Diversity 

- Variety No. of product types 
 

- Balance6 

1−








frequencyproductAverage

productcommonmostofFrequency
 

- Disparity7 

1

1

−

−

streamsproduct.No

typesproduct.No
 

Table 2.1 – Diversity Measures  

 
3 In all cases both the number of individual product streams and the total production tonnage were considered as 

indicators of scale, but there was no discernable difference in the results, so for convenience only those results relating 

to production tonnage are presented in this paper. 
4 The geographical disparity of a company indicates how (dis)similar each of its operating locations are – identical 

locations produce exactly the same product portfolio and completely dissimilar locations have no products in common. 

I developed the following metric which measures the extent to which each product is produced at every location. An 

analogous measure looks at the ownership disparity of operating locations and is generated simply by replacing the 

locations with companies in the formula. 

locationsNo

LocationbyCountodlocationsNoproductsNo
companiesMeasureDisparity

.

.Pr)..(
)(

−
=  

The theoretical maximum number of occurrences of each product is given by the total number of products multiplied 

by the number of locations. If every product that a company produces is produced at every location, then every location 

would appear to be the same, and there would be no disparity. In this circumstance, the product count by locations 

would equal the maximum number of occurrences, and the numerator would equal zero. Division by the total number 

of locations stops the disparity measure from increasing exponentially as the number of locations gets smaller. 
5 See above 
6 When looking at production chain diversity, the balance metric is a measure of the degree to which each product is 

equally significant in the overall portfolio. 
7 Disparate production chains will show little duplication of products, whereas similar ones will produce the same 

products many times. So the ratio of the number of products to the number of product streams is used as the disparity 

metric for production chains. 
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2.1.1 Diversity between Companies 

There is a clear correlation between all three of the diversity dimensions and increasing 

company size (figure 2.1). This correlation is strongest for the disparity index, and is 

reasonable for the variety index, implying that larger companies tend to produce different 

products at their various operating locations (they have a high disparity index), and that 

they operate in many locations (they have a high variety index). The balance index 

suggests that there is a greater variety in the extent of larger companies’ operations across 

their operating locations.  
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Figure 2.1 – Geographical Diversity of Petrochemical Companies 

 

Figure 2.2 shifts the emphasis to the diversity of the companies’ production portfolios. 

There is a strong correlation between the number of products produced (variety) and 

company size. It would seem that the number of plants producing each of these products 

becomes increasingly unbalanced as company size increases.  
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Figure 2.2 – Production Diversity of Petrochemical Companies 
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There is no meaningful correlation between company size and production disparity, 

which converges to a value of about 0.3 as company size increases. This implies that 

large companies have an average of about 3 production streams for each product, though 

we must bear in mind that the number of production streams per product becomes 

increasingly unbalanced with size. 

 

 

2.1.2 Diversity between Locations 

Again there are good correlations between all three diversity dimensions and increasing 

location size (Figure 2.3), the strongest of which is with ownership disparity. The largest 

locations have the greatest number of operating companies, and critically these 

companies tend to produce different things. We also see that the variety in size of 

companies’ operations at any location tends to increase with larger location size. 
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Figure 2.3 – Ownership Diversity of Petrochemical Production Locations 

 

 

Figure 2.4 focuses on production portfolio diversity for the same locations. Variety is 

unsurprisingly correlated with increasing size but, as was the case for companies, 

production disparity (duplication of product types) is invariant with scale. So it seems 

that locations grow through product diversification and not through specialisation. Again, 

location disparity tends towards an “optimum” value, of about 0.6, as location size 

increases. So, sites tend towards an average of two production streams per product, 

though the imbalance between the most and least common products also increases with 

size. 
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Figure 2.4 – Production Diversity of Petrochemicals Production Locations 

 

 

 

2.1.3  Conclusions & Implications 

The results suggest that the largest companies are characterised as operating with the 

highest levels of geographical diversity. They operate at a large number of locations, and 

critically produce different products at each location. They also have the widest product 

portfolio, and the greatest degree of imbalance in the scale of their geographical 

operations and their product portfolios. The same sets of characteristics are seen in the 

largest operating locations. This clearly does not support any suggestion that 

specialisation, leading to economies of scale and experience, is a common competitive 

strategy, but supports the case for further examination of the industry from a co-

evolutionary perspective.   
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2.2 Growth & Attractors 

Power-laws are taken to indicate the presence of a growth dynamic in which the larger or 

better connected actors attract a disproportionate or preferential opportunity for further 

growth or connectivity (Barabasi & Albert 1999). By contrast, a Gaussian distribution is 

generated by a system or network in which there is a typical or optimum size and any 

growth is distributed without bias. As such, the actual distribution of a real system can be 

used to infer the underlying dynamics that describe that system’s behaviour (Amaral et al 

2000).  

 

Following the procedure established by Amaral et al (2000), the cumulative frequency 

and rank-order distributions of scale and of network connectivity can be plotted using 

linear and log scales. A straight line in a linear plot of cumulative distribution against a 

log plot of scale indicates an exponential decay curve, which is typical of an underlying 

Gaussian distribution. This indicates that a typical scale or degree of connectivity exists, 

about which the real observations are distributed. Alternatively a straight line in a log–log 

plot indicates a power law distribution in which there is no typical scale. 

 

This methodology was applied to the petrochemicals industry data. Scale was 

investigated using the number of product streams and total production tonnage. Network 

connectivity of both companies and locations was examined through the number of links 

to locations and owners respectively, the number of interlocks between companies and 

locations, and also the number of product types that they produce. The results are 

summarised in table 2.2 and then illustrated in the subsequent figures. 

 

 Companies Locations Production Webs 

Product Stream 
Distribution 

Power-Law 
(Truncated) 

Ambiguous Power-Law 

Production Tonnage 
Distribution 

Power-Law 
(Truncated) 

Ambiguous Predominantly 
Power-Law 

Product Type 
Distribution 

Power-Law 
(Truncated) 

Predominantly 
Gaussian 

Power-Law 

Company Link 
Distribution 

N/A Gaussian Power-Law 

Location Link 
Distribution 

Power-Law 
(Truncated) 

N/A N/A 

Production Web Link 
Distribution 

Power-Law 
(Truncated) 

N/A N/A 

Interlock Distribution 

 

Gaussian Predominantly 
Gaussian 

Gaussian 

 

Table 2.2 – Observed Distributions in the Power-Law Study 
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2.2.1 Scale and Connectivity of Companies 

Scale Metrics 
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Figure 2.5 – Company Cumulative Distribution 

of Product Streams (log-normal) 

Figure 2.6 – Company Cumulative Distribution 

of Product Streams (log-log) 
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Figure 2.7 – Company Cumulative Distribution 

of Production Tonnage (log-normal) 

Figure 2.8 – Company Cumulative Distribution 

of Production Tonnage (log-log) 

 

Connectivity Metrics 
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Figure 2.9 – Company Cumulative Distribution 

of Product Types (log-normal) 

Figure 2.10– Company Cumulative 

Distribution of Product Types (log-log) 
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Figure 2.11 – Company Cumulative 

Distribution of No. of Locations (log-normal) 

Figure 2.12 – Company Cumulative 

Distribution of No. of Locations (log-log) 
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Figure 2.13 – Company Cumulative 

Distribution of No. of Production Webs (log-

normal) 

Figure 2.14 – Company Cumulative 

Distribution of No. of Production Webs (log-

log) 
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Figure 2.15 – Cumulative Distribution of No. of 

Company Interlocks (log-normal) 

Figure 2.16 – Cumulative Distribution of No. of 

Company Interlocks (log-log) 

 

 

The company scale and connectivity distributions show very clear truncated power-law 

distributions, the only exception being the interlock distribution which is Gaussian. 
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2.2.2 Scale and Connectivity of Locations 

Scale Metrics 
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Figure 2.17 – Location Cumulative 

Distribution of Product Streams (log-normal) 

Figure 2.18 – Location Cumulative 

Distribution of Product Streams (log-log) 
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Figure 2.19 – Location Cumulative 

Distribution of Production Tonnage (log-

normal) 

Figure 2.20 – Location Cumulative 

Distribution of Production Tonnage (log-log) 
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Figure 2.21 – Location Cumulative 

Distribution of Product Types (log-normal) 

Figure 2.22 – Location Cumulative 

Distribution of Product Types (log-log) 
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Figure 2.23 – Location Cumulative 

Distribution of No. of Companies (log-normal) 

Figure 2.24 – Location Cumulative 

Distribution of No. of Companies (log-log) 
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Figure 2.25 – Cumulative Distribution of No. of 

Location Interlocks (log-normal) 

Figure 2.26 – Cumulative Distribution of No. of 

Location Interlocks (log-log) 

 

The scale distributions of locations are ambiguous, neither fitting a Gaussian or power-

law pattern. The connectivity distributions are more clearly Gaussian, implying that 

either there are significant cost or ageing factors at play (Amaral et al 2000) or, less 

probably given the results observed for companies, that the network is stable. This 

observation led me to look at the inter-connection of locations through long-distance 

pipelines, thus generating a new classification of production webs. 

 

 

2.2.3 Scale and Connectivity of Production Webs 
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Figure 2.27– Prod. Web Cumulative 

Distribution of Product Streams (log-normal) 

Figure 2.28 – Prod. Web Cumulative 

Distribution of Product Streams (log-log) 
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Figure 2.29 – Prod. Web Cumulative 

Distribution of Production Tonnage (log-

normal) 

Figure 2.30 – Prod. Web Cumulative 

Distribution of Production Tonnage (log-log) 
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Figure 2.31 – Prod. Web Cumulative 

Distribution of Product Types (log-normal) 

Figure 2.32 – Prod. Web Cumulative 

Distribution of Product Types (log-log) 

 

 

0.001

0.01

0.1

1

0 10 20 30 40 50

No. Owners

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

o
n

y = 0.7358x-1.1517

R2 = 0.954

0.001

0.01

0.1

1

1 10 100

No. Owners

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

o
n

 
Figure 2.33 – Prod. Web Cumulative 

Distribution of No. of Companies (log-normal) 

Figure 2.34 – Prod. Web Cumulative 

Distribution of No. of Companies (log-log) 
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Figure 2.35 – Cumulative Distribution of No. of 

Production Web Interlocks (log-normal) 

Figure 2.36 – Cumulative Distribution of No. of 

Production Web Interlocks (log-log) 

 

 

Where pipelines collapse the physical distance between linked locations, power-law 

distributions of scale and connectivity re-emerge. As was found for companies, the 

interlocks between production webs show a Gaussian distribution. 

 

 

 

2.2.4  Conclusions and Implications 

Company scale and connectivity are power-law distributed, but with a distinct truncation 

beyond which scale effects suddenly dominate. It is commonly accepted that power-law 

distributions arise as a consequence of growth of a system or network, but the suggestion 

that there this is still significant growth in the industry is an unexpected result. The 

truncation might represent the point at which ageing or cost factors become significant 

(Amaral et al 2000), but I suspect that its abruptness is better explained as a consequence 

of competition authority regulation.  

 

The results for locations are categorically different, in that location size and connectivity 

follow, if anything, a Gaussian distribution. This suggests that there are significant 

impediments to growth, particularly amongst the larger sites. The production web 

(locations linked by long-distance pipelines) results follow power-law distributions that 

match those of companies (albeit without truncation). The implication is that while 

individual sites become constrained in their ability to add new capacity or attract new 

companies, the industry uses long-distance pipelines to overcome these constraints and 

continue to expand and diversify. 

 

The only consistently Gaussian distribution is of the number of interlocks. This implies 

that the networks of relationships between companies, between locations and between 

production webs is stable, and has a typical or optimum connectivity.  
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3. Network-enabled Sustainability and Network-driven 

Growth, Innovation and Information Exchange 
 

Innovation and learning often involves the transfer of tacit knowledge (MacKinnon et al 

2002), and the idea that knowledge and information forms one of the bases for 

competition is not new. However, that knowledge is not a public good and incurs 

significant maintenance and transmission costs is less well acknowledged (Kogut & 

Zander 1993). 

 

A number of factors make the transference of tacit knowledge more straight forward, 

such as repeated interaction and a common architecture and understanding (Tallman 

2003). Specialisation within firms is generally stable and self-preserving because it is 

based on incommunicable competencies (Kogut 2000), leading to the idea of identity. 

This concept, which is inherent in the structure of the firm, implies that idiosyncratic, 

tacit knowledge is more suited to intra-firm transmission than external codification and 

exchange (Kogut & Zander 1993).  Buckley & Casson (1976 in Kogut & Zander 1993) 

suggested that firms act as secure, efficient networks for the transmission of knowledge 

and information, and Tallman (2003) claims a metaphorical and explanatory significance 

to the model of a multinational corporation as “a repository of knowledge rather than as a 

‘nexus of contracts’”. 

 

Interestingly these same factors serve to strengthen networks where they operate. In 

much the same way that firms can be viewed as social communities that provide “the 

cognitive representation of what constitutes the object of membership, that is, of identity” 

(Kogut 2000:408), so too can a long-established network, especially where that network 

is geographically defined. Thus networks have, to some extent, the ability to replicate the 

capabilities of firms to act as vehicles for information and knowledge transmission 

through close, often informal, interpersonal and inter-firm relationships which are the 

consequence of repeated and frequent interaction (MacKinnon et al 2002).  

 

Where networks operate, their primary function “is to provide firms with access to 

information and other resources in the relevant environment” (Staber 2001:545) and 

firms “innovate and prosper through a collective learning process which depends strongly 

on existing synergies among a group of firms” (ibid:538). The norms of behaviour and 

culture within a firm limit the variety of options that it can pursue. By contrast, networks 

and markets are free to reorganise spontaneously, without any impact on the component 

specialisation provided by the member firms, allowing a far more diverse set of options. 

This leads to a “symbiotic interdependence” between the firms that enables “the rapid 

diffusion of new information and critical resources”. Networks serve to coordinate an 

outcome that the individuals would be unable to achieve in isolation (Lado et al 1997) 

such as the development of capabilities that are properties of the network itself, and in 

turn promote the interdependence of the participating firms (MacKinnon et al 2002).  
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Local networks clearly play an important part in the development of competitive 

advantage, as Porter (1998:78) articulates: “the enduring competitive advantages in a 

global economy lie increasingly in local things – knowledge, relationships, motivation – 

that distant rivals cannot match”. But we must test the relative significance of the local 

environment and the wider geographical context: 

“But how important is regionalization? Is the region somehow a necessary source 

of the dynamism of these production systems and, hence, of the developmental 

dynamics of contemporary capitalism itself? Or is regionalization merely an 

expression of, another interesting empirical dimension of, technological and 

organizational changes in successful production systems?” (Storper 1997:4). 

 

MacKinnon et al (2002) identify a number of studies which have demonstrated that 

spatial proximity enables network-wide learning. They report Saxenian’s (1994) 

articulation of “the contrast between the continuing dynamism of Silicon Valley and the 

relative stagnation of Route 128 as a product of the former’s reliance on cooperative 

networking arrangements, which promote flexibility and collaborative learning, and the 

latter’s experience of mounting organizational rigidities through its continuing orientation 

towards vertical integration and product standardization” (MacKinnon et al 2002:299). 

Kogut’s (2000:422) view has shifted subtly, and he now sees the boundaries between 

firms and networks as “malleable definitions determined by shifting identities and their 

coevolving capabilities”. 

 

Thus, in attempting to explain different structural forms, it is critical that we understand 

and can test for the conditions that influence the relative efficiency of firms and networks 

in the creation and transfer knowledge. 

 

 

3.1 Small Worlds 

Small-world networks were identified by Watts & Strogatz (1998) as networks which: 

“On the one hand, … display a large clustering coefficient, meaning that on 

average a person’s friends are far more likely to know each other than two people 

chosen at random. On the other hand … connect two people chosen at random via 

a chain of only a few intermediaries” (Watts 2003:77). 

 

Fragmentation, as seen in the petrochemicals industry, might enable “small-world” 

characteristics. The associated rapid diffusion of information and ideas might provide 

some explanation of its utility.  
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Watts and Strogatz’s (1998, Watts 1999) propose a methodology of comparing average 

path length and cluster coefficients of actual networks against equivalent random 

networks of the same size and density to identify small-worldliness. Using UCInet 

(Borgatti et al 2002) it is possible to identify the actual average path length and clustering 

coefficients of real networks8, and the equivalent figures for a random network can be 

derived using simple formulae (Watts 1999:502).  

 

Small-world identification requires that n >> k >> ln(n) >> 1 (Watts & Strogatz 

1998:440)9, where n is the total number of actors in the network, and k is the average 

degree (i.e. number of links) of those actors. Furthermore, in order to ensure that the 

network is decentralised, not only must the average degree k be much less than n, but the 

maximal degree kmax over all vertices must also be much less than n (Watts 1999:496). 

 
 n kmax k ln(n) 

Companies 117 25 6.66 4.76 

Locations 143 16 12.27 4.96 

 

Table 3.1 – Network Parameters for Small-Worldiness Assessment 

 

It is clear from tables 3.1 and 3.2 that all of the conditions required for the analysis to be 

deemed valid are satisfied, and that along both dimensions the network formed between 

petrochemicals companies and locations is a small-world network. 

 
 Average Path Length Average Clustering Coefficient 

 Actual Random Actual Random 

Results for Petrochemicals Industry generated in this study 

Companies 2.23 2.51 0.82 0.057 

Location 2.13 1.98 0.82 0.086 

Watts & Strogatz’s results (for comparison) 

Film Actors 3.65 2.99 0.79 0.00027 

Power Grid 18.7 12.4 0.080 0.005 

C. elegans 2.65 2.25 0.28 0.05 

 

Table 3.2 – Results & Comparators for Small-Worlds Study 

 
8 I encountered a number of operational difficulties in this study. The theoretical approach is predicated on a very large, 

fully connected network. In this case, while the networks are large, they are not so large that individual actors do not 

influence the overall, averaged network properties.  

A greater problem was that the real networks contain a number of unconnected actors and components. The average 

path length between these and the rest of the network has no real meaning, and becomes difficult to code for 

mathematically. My pragmatic response was to only consider the main connected component in each network, and to 

ignore the unconnected actors. The main components represented 84% of the companies (117 from the total of 140), 

and 86% of the locations (143 from the total of 167).  

A second problem concerned pendants (actors that have only one link into the main component, and as such are only 

connected to one other actor) to the main components. There is no meaningful definition of the clustering coefficient 

for a pendant (since it is impossible to say whether it’s single linked actor forms a dense cluster, or is totally isolated). 

In calculating the average cluster coefficient for the network I simply ignored all pendants. This seemed to be more 

reasonable than assigning them a clustering coefficient of 1, indicating a fully connected clique, or a value of 0, 

implying a totally dispersed structure, neither of which seem to properly reflect the ‘real’ situation. 

 
9 The first condition ensures that the network is sparse, and hence that the results obtained are meaningful, and the 

second condition ensures that the equivalent random network will be fully connected, and the third condition is the 

minimum requirement for a fully connected real network. 
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Figure 3.1 – Network of Companies Linked by Common Operating Location 

 

 

 
Figure 3.2 – Network of Locations Linked by Common Operating Companies 
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3.1.1  Conclusions & Implications 

The petrochemicals industry does indeed fall into the “small-world” category of 

networks. This result is significant as it implies that all actors within the network, be they 

companies, locations or specific operating plants, have short links to the rest of the 

industry without knowing or realising this to be the case. This phenomenon informs the 

nature of the self-sustaining dynamics that might be responsible for sustaining such a 

structure, and is supportive of the idea that the transfer of tacit knowledge is significant. 

 

 

 

 

 

 

 

3.2 Social Network Analysis Methodology and Tools 

Network positions differ in terms of power and influence. Participants are not only 

advantaged by their membership in a collaborative network, but some of them are likely 

to be better placed to benefit by virtue of their position within it (Kogut 2000). Through 

the application of a variety of standard social network analysis (SNA) metrics I have been 

able to identify which features of network participation and connectivity can be 

associated with co-evolutionary economic success, and hence infer something about the 

dynamics at play within such systems. 

 

Relative scale is a reasonable indicator of co-evolutionary success, and to this end I chose 

two readily available metrics for the petrochemicals industry: the number of product 

streams, which is very closely correlated with the number of production units, and as 

such is loosely indicative of employment generation capacity; and total production 

tonnage, this being the closest proxy for value generating potential that is available 

(accepting that there are a number of inherent, unsubstantiated assumptions being made). 

 

The ‘successful’ companies and locations were identified and allocated to a division 

using a maximal differential technique, starting with the largest (because I am interested 

in success rather than vulnerability).  
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Table 3.3 identifies the companies in each division, together with their ranking in size 

order of product streams and tonnage10.  

 

  

Company 
  

Product Streams Tonnages 

  

No PSTs Rank Throughput 
Total (ktes) 

Rank 

 Div 1 TotalFinaElf 151 1 17650 2 

  BASF 148 2 17691 1 

  ENI 123 3 14141 5 

  Shell 116 4 14028 6 

  BP 115 5 16160 4 

  Dow 101 6 17004 3 

 Div 2 E-On 62 7 3345 15 

  ExxonMobil 60 8 8041 7 

  Bayer 58 9 4146 13 

  Borealis 44 10 7072 8 

  Solvay 43 11 4592 11 

  Repsol 40 12 4406 12 

  DSM 36 13 5923 10 

  RWE-DEA 35 14 1794 21 

  Rhodia 35 15 1517 22 

  Ineos 34 16 6776 9 

  PDVSA 30 17 1829 19 

 

Table 3.3 – Divisions of the Most Successful Companies 

 

 
10 Figure 3.3 shows the results of this process for companies (only the first 40 largest companies are shown for ease of 

examination), and clearly identifies a distinct set of 6 highly successful companies. Examination of the results shows 

that these are the same 6 companies in both cases, so I have allocated these companies to the first division of successful 

organisations. The product stream map also shows a cut-point at the 17th company, and these show a reasonable fit with 

the ranked order of the tonnage list, so I have hypothecated the possible existence of a second division that contains the 

next 11 companies in the product stream list. 
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Figure 3.3 – Company Scale: Incremental Changes to Average Size (product streams and total production tonnage) 
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Exactly the same process was followed for locations, and the results are presented in 

table 3.411. 

 

  

Location 
  

Tonnage Product Streams 

  

Throughput 
Total (ktes) 

Rank No PSTs Rank 

 Div 1 Gtr_Antwerp 16013 1 85 1 

  Gtr_Oberhausen 13059 2 79 2 

  Gtr_Rotterdam 12912 3 52 4 

  Gtr_Cologne 12483 4 68 3 

 Div 2 Gtr_Marseilles 8411 5 43 6 

  Gtr_Terneuzen 8190 6 37 10 

  Gtr_Teesside 6650 7 36 11 

  Gtr_Mannheim 6328 8 48 5 

  Tarragona 6194 9 39 9 

  Gtr_Le_Havre 6052 10 40 7 

  Gtr_Leipzig 5884 11 39 8 

 

Table 3.4 - Divisions of the Most Successful Locations 

 

Following the methodology established in earlier studies, the networks of companies 

sharing locations, and locations sharing companies are investigated separately from the 

networks formed by companies (or locations) linked through their product portfolios.  

This acknowledges the strength of formal networking organisations within the industry 

based on specific technologies and products. 

 

I identified a set of network characteristic metrics that have a reasonably clear 

interpretation in this context (table 3.5). Many alternatives were available (Scott 

2000:82,100, Hanneman 2001:60,77) but I selected those that were most suitable by 

virtue of having the most intuitive interpretation. Rank-order lists were generated for the 

actors in each network against all of these metrics.  

 

 

 

 

 
11 In this case (figure 3.4) there appears to be a very small core of 3 or 4 highly successful locations, and again these are the same 

locations in both cases. There is then a second cut-point after the largest 11 locations have been included. 
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Figure 3.4 - Location Scale: Incremental Changes to Average Size (product streams and total production tonnage) 
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Metric 
 

Description Interpretation 

Coreness 
Distance 

The average geodesic distance 
between any particular actor, and every 
other actor in the network. Measured in 
terms of the smallest number of links 
between the two actors.  
 

A small coreness distance indicates 
that the actor in question is closely 
linked to the all other actors in the 
network 

k-core A set of at least k actors, each of which 
has at least k links to other actors within 
the core. At its most trivial level, a 1k-
core simply describes the whole 
network, but increasing values of k 
rapidly identifies the maximally inter-
connected core of the network, and the 
value of k is indicative of the density of 
the core 
 

Increasing k values indicate 
participation in an ever denser cluster. 
If the k value is close to the total 
number of members of the core this 
further indicates that the cluster is 
almost totally introspective with 
respect to the rest of the network 

m-core A set of actors who have ties between 
them of minimum strength m. A 1m-
core simply describes the whole 
network, but increasing values of m 
rapidly identifies the most strongly 
linked actors. 

This metric looks for groups that have 
a number of multiple links between 
them. It is the only metric in the study 
that differentiates between, for 
example, two companies linked by 
operation at a single location, and a 
different two companies that are 
linked through operation at 20 
different locations.  
 

Betweenness The proportion of geodesics (i.e. the 
shortest paths between two actors) 
between all other actors in the network 
that pass through the actor in question 
 

Indicates the influence of the actor in 
question over the efficient operation of 
the network 

flow 
betweenness 

The proportion of all paths between all 
other actors in the network, not only the 
geodesics, that pass through the actor 
in question 
 

The influence of the actor in question 
over the operation of the network as a 
whole, irrespective of its efficiency 

 value from 
a lambda 
sets analysis 

This value equals the minimum number 
of network links that need to be broken 
before any two actors can be isolated 
from one another 

Indicative of the pervasiveness of the 
actors’ linkages across the network, 
and hence the extent to which the 
actors in question are likely to be 
aware of each other’s, and the rest of 
the network’s activities 
 

 

Table 3.5 – SNA Metrics used in Co-evolutionary Success Study 
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3.2.1 Company – Location Networks 

Table 3.6 shows the characteristics of the most successful companies within the 

company-location network. 

 
Company

Coreness 

Distance 

Rank

K_Core 

Rank

M_Core 

Rank

Betweenness 

Rank

Flow 

Betweenness 

Rank

Lambda 

Set Rank

Div 1 TotalFinaElf 5 17 5 2 3 3

BASF 3 1 1 4 10 1

ENI 8 1 8 7 2 14

Shell 2 17 1 9 15 5

BP 1 1 3 5 4 6

Dow 4 17 5 1 1 1

No. ranked in top 6 5 3 5 4 4 5

proportion ranked in top 6 0.833 0.500 0.833 0.667 0.667 0.833

Div 2 E-On 6 1 5 13 12 8

ExxonMobil 7 17 3 21 24 9

Bayer 12 1 8 8 8 4

Borealis 22 17 20 6 9 13

Solvay 13 1 10 17 31 12

Repsol 56 1 20 12 7 52

DSM 21 1 20 10 16 11

RWE-DEA 11 17 12 32 42 28

Rhodia 16 17 12 3 5 7

Ineos 19 1 12 15 14 10

PDVSA 17 1 10 28 43 17

No. ranked in top 17 7 11 8 8 7 9

proportion ranked in top 17 0.636 1.000 0.727 0.727 0.636 0.818

Overall

No. ranked in top 17 13 17 14 14 13 15

proportion ranked in top 17 0.765 1.000 0.824 0.824 0.765 0.882

Owners Linked Through Location

 
 

Table 3.6 – Network Characteristics of the Most Successful Companies 

 

There is a strong correlation between rank position and co-evolutionary success across all 

of the metrics chosen. It should be noted that the highest k-core identified was a 13-core 

with 16 members; a k-core rank of 17 simply indicates that the company is a member of 

the second largest k-core. 

 

By contrast, the results for locations (table 3.7) show a more varied picture. There is a 

strong correlation between success and coreness distance and k-core rank, but the 

correlation with the betweenness metrics is far less compelling. 
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Location

Coreness 

Distance 

Rank

K_Core 

Rank

M_Core 

Rank

Betweenness 

Rank

Flow 

Betweenness 

Rank

Lambda 

Set Rank

Div 1 Gtr_Antwerp 1 1 1 3 8 1

Gtr_Oberhausen 4 1 6 2 5 3

Gtr_Rotterdam 5 1 1 15 17 11

Gtr_Cologne 3 1 6 27 28 12

No. ranked in top 4 3 4 2 2 0 2

proportion ranked in top 4 0.750 1.000 0.500 0.500 0.000 0.500

Div 2 Gtr_Marseilles 2 1 1 19 41 4

Gtr_Terneuzen 31 1 18 35 27 25

Gtr_Teesside 13 1 8 4 6 6

Gtr_Mannheim 19 45 14 52 73 36

Tarragona 15 1 17 9 9 21

Gtr_Le_Havre 7 1 8 22 39 5

Gtr_Leipzig 10 1 17 11 26 1

No. ranked in top 11 3 6 3 3 2 4

proportion ranked in top 11 0.429 0.857 0.429 0.429 0.286 0.571

Overall

No. ranked in top 11 9 10 7 5 4 7

proportion ranked in top 11 0.818 0.909 0.636 0.455 0.364 0.636

Locations Linked through Ownership

 
 

Table 3.7 - Network Characteristics of the Most Successful Locations 
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3.2.2 Product Portfolio Networks 

The same analysis was undertaken, but considering companies or locations to be linked if 

they produce the same product(s). The intention was to assess the extent to which 

particular products are associated with success. 

 

 
Company

Coreness 

Distance 

Rank

K_Core 

Rank

M_Core 

Rank

Betweenness 

Rank

Flow 

Betweenness 

Rank

Lambda 

Set Rank

Div 1 TotalFinaElf 5 1 5 2 2 1

BASF 1 1 1 1 1 1

ENI 4 1 5 4 5 4

Shell 3 1 3 6 7 5

BP 2 34 3 5 6 6

Dow 6 1 1 3 3 1

No. ranked in top 6 6 5 6 6 5 6

proportion ranked in top 6 1.000 0.833 1.000 1.000 0.833 1.000

Div 2 E-On 7 34 7 10 8 7

ExxonMobil 8 34 9 16 14 14

Bayer 19 57 11 7 4 11

Borealis 15 34 11 37 54 27

Solvay 9 34 17 18 21 17

Repsol 10 34 8 11 12 10

DSM 11 34 10 9 10 9

RWE-DEA 16 34 11 24 26 15

Rhodia 21 1 16 8 9 8

Ineos 27 67 24 35 36 56

PDVSA 12 34 14 32 60 23

No. ranked in top 17 8 1 10 6 6 8

proportion ranked in top 17 0.727 0.091 0.909 0.545 0.545 0.727

Overall

No. ranked in top 17 14 6 16 12 12 14

proportion ranked in top 17 0.824 0.353 0.941 0.706 0.706 0.824

Ownership Linked Through Products

 
 

Table 3.8 – Production Portfolio Network Characteristics of the Most Successful Companies 

 

Again, we see that all of the network characteristics are closely associated with company 

success, particularly with the Division 1 companies (table 3.8). It is interesting to note 

that the Division 1 and Division 2 companies are differentiated by their k-core and 

betweeness ranks.  

 

The results of the analogous study for locations (table 3.9), shows a strong correlation 

between success and the coreness distance, k-core and m-core ranks, but far weaker 

correlations with the other parameters.   
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Location

Coreness 

Distance 

Rank

K_Core 

Rank

M_Core 

Rank

Betweenness 

Rank

Flow 

Betweenness 

Rank

Lambda 

Set Rank

Div 1 Gtr_Antwerp 2 1 3 4 6 4

Gtr_Oberhausen 1 1 1 1 2 1

Gtr_Rotterdam 4 1 1 6 7 6

Gtr_Cologne 3 1 4 7 4 8

No. ranked in top 4 4 4 4 2 2 2

proportion ranked in top 4 1.000 1.000 1.000 0.500 0.500 0.500

Div 2 Gtr_Marseilles 7 1 7 13 9 17

Gtr_Terneuzen 12 1 12 8 8 6

Gtr_Teesside 11 1 9 9 10 7

Gtr_Mannheim 5 1 4 2 1 3

Tarragona 8 1 9 14 12 11

Gtr_Le_Havre 9 1 8 18 17 14

Gtr_Leipzig 6 1 4 3 3 1

No. ranked in top 11 6 7 6 4 5 5

proportion ranked in top 11 0.857 1.000 0.857 0.571 0.714 0.714

Overall

No. ranked in top 11 10 11 10 8 9 9

proportion ranked in top 11 0.909 1.000 0.909 0.727 0.818 0.818

Locations Linked through Products

 
Table 3.9 - Production Portfolio Network Characteristics of the Most Successful Locations 

 

 

 

3.2.3  Conclusions & Implications 

This analysis only identifies correlations not causality. The results might be indicative of 

self-reinforcing feedback loops, but cannot identify their initial origin. 

 

There is an overwhelmingly strong relationship between network position and co-

evolutionary success within the system. This is perhaps not very surprising, but there are 

insights to be gained where this relationship breaks down. 

 

Betweenness indicates the degree of influence that an actor has over the network. The 

results indicate that influence is a significant feature of the most successful companies, 

but is apparently much less important for locations. Whether this implies that the most 

influential companies are actively making use of their influence to manipulate the 

industry, and whether such manipulation would be legitimate, are questions beyond the 

scope of this study.  

 

A second, perhaps related, question is raised by the k-core differentiation of Division 1 

and Division 2 companies with regard to their production portfolios. The Division 1 

companies have a common core production portfolio that links them together very 

closely. Missing part of this core portfolio is a serious impediment to evolutionary 

success as the Division 2 companies demonstrate. The Division 1 companies exercise far 

greater influence over the operation of the network, as indicated by their betweenness 

scores. This might be an indication of an oligopoly in action (Holm et al 1996).  
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3.3 Stability 

Understanding network structure enables an investigation of the ability of the network to 

absorb new ideas, to transmit information and innovation and coordinate its on-going 

development (Watts 2003). It also enables the identification of actors who are critical to 

the effective operation of the network, and those best placed to influence it. Hence, by 

utilising conventional network analysis tools it is possible to draw conclusions 

concerning the future viability of an industry, sector or cluster. 

 

 

3.3.1 Information Cascades 

Watts’ (2002 and 2003:153) model of information cascades assumes that a new idea or 

innovation is only adopted by an actor if a threshold proportion of the other actors to 

which it is linked have already adopted the change. “In threshold models the impact of 

one person’s action on another’s depends critically on what other influences the other has 

been exposed to” (Watts 2003:230). As such, it offers a model for diffusion of ideas, 

innovations and new ways of working through the industry. Amongst his conclusions is 

the observation that for global cascades to occur there must be a pervasive core of low 

threshold “early adopters” throughout the network. Furthermore, there is a link between 

the average degree (i.e. the average number of connections within the network) and the 

average threshold value necessary for global cascades to occur. This yields a lower 

threshold for cascades (where the average degree ~ 1) and an upper threshold, above 

which the density of connections prevents the threshold value ever being reached for 

most actors. “Cascades can still be forbidden by the network itself, in two ways – either it 

is not well connected enough or (and this is the surprising part) it is too well connected” 

(Watts 2003:237).  
 

A rigorous quantitative application of the model requires detailed knowledge of the 

response of the actors to change (the threshold at which they will adopt an exogenous 

change), and of their propensity to associate with similar actors, neither of which is 

known. Nonetheless, it is possible to assess the implications and assumptions that 

underpin the model in a qualitative way.  

 

Only the network of companies (linked through location) was considered. The 

interpretation of modes of innovation and information transmission through this network 

is clear (a mechanism whereby companies generate and own innovations that are 

transmitted to other companies through partnerships, contacts between personnel etc. is 

intuitive). An analogous interpretation of locations acting directly as active generators or 

adopters of innovations is less clear. 
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The core of the company-location network (i.e. the 13k-core identified previously) is 

actually formed by a 16 member 1-plex (Scott 2000:118) which is the largest in the 

network. This means that the central 16 companies in the network are linked to one 

another, and each has only one connection outside this group. If we accept the threshold 

conjecture for the adoption of new ideas, the implication is that it is very unlikely that 

this core group will act as early adopters, as their influence threshold can never be 

reached.  

 

It is still possible for companies within this core to instigate change, but they are unlikely 

to be involved in the early-stage propagation of any change that was not internally 

generated. But, because the core provides many of the short-cuts across the network, 

removing these actors from the potential pool of early adopters significantly increases the 

size of the early adopter network necessary for global cascades to occur and increases the 

distance across which innovations need to be transmitted. This has the dual impact of 

reducing the likelihood of the existence of a pervasive network of early adopters and of 

reducing the probability any transmission being successful (Watts, Dodds & Newman 

2002). 

 

Furthermore, the average degree of the connected component in the company-location 

network is over 13. At this level it is clear that the network is well above the lower 

threshold, and is likely to be close to, or even above the upper threshold (Watts 

2003:238) for information cascades to be possible.  

 

 

3.3.2 Sector Influence 

Another potential evaluation that can be made concerns the vulnerability of the network 

to node interference (Borgatti 2003). I used Keyplayer software (Borgatti 2003) to 

identify the actors (companies and locations) that offer the most pervasive overview of, 

or opportunity to influence, the network as a whole.  

 

The following tables (3.12 and 3.13) display the results of this analysis focusing on the 

influence of an increasing number of coordinated nodes12. Adding more nodes beyond 

the number shown generated lists in which the consistency breaks down, as very subtle 

and inconsequential differences begin to dominate.  

 

 
12 This analysis maximises the number of other actors that can be reached by the starting set. For this study only direct 

contacts have been considered, as we are primarily concerned with early-stage propagation of ideas through direct 

contact and influence. 
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Number of Nodes 

Engaged 1 2 3 4 5 6 7 8 9

Dow Dow Dow Dow Dow Dow Dow Dow Dow

TotalFinaElf TotalFinaElf TotalFinaElf TotalFinaElf

Borealis Borealis Borealis Borealis Borealis Borealis Borealis

DSM

Akzo_Nobel Akzo_Nobel Akzo_Nobel Akzo_Nobel Akzo_Nobel

ENI ENI ENI ENI ENI

BP BP BP BP

Rhodia Rhodia Rhodia Rhodia

BASF BASF BASF

Repsol Repsol

Maerkishe_Faser

Number of Co's 

Influenced 61 80 91 98 103 107 109 111 113
Proportion of all 

Co's influenced 43.6 57.1 65.0 70.0 73.6 76.4 77.9 79.3 80.7

Engaged nodes 

with maximum 

impact

 
Table 3.12 – Company Network Engagement – Most Critical Nodes 

 

 
Number of Nodes 

Engaged 1 2 3 4 5 6

Engaged nodes with Gtr_Antwerp Gtr_Antwerp Gtr_Antwerp

Gtr_Bilbao Gtr_Bilbao

Gtr_Oberhausen Gtr_Oberhausen Gtr_Oberhausen Gtr_Oberhausen Gtr_Oberhausen

Gtr_Monza Gtr_Monza Gtr_Monza

Gtr_Stenungsund Gtr_Stenungsund Gtr_Stenungsund

Tarragona Tarragona Tarragona

Portalegre Portalegre

Number of Co's 

Influenced 76 106 114 121 125 128
Proportion of all Co's 

influenced 45.5 63.5 68.3 72.5 74.9 76.6

Number of Nodes 

Engaged 7 8 9 10 11 12

Gtr_Antwerp Gtr_Antwerp Gtr_Antwerp Gtr_Antwerp Gtr_Antwerp Gtr_Antwerp

Gtr_Oberhausen Gtr_Oberhausen Gtr_Oberhausen Gtr_Oberhausen Gtr_Oberhausen Gtr_Oberhausen

Gtr_Monza Gtr_Monza Gtr_Monza Gtr_Monza Gtr_Monza Gtr_Monza

Gtr_Stenungsund Gtr_Stenungsund Gtr_Stenungsund Gtr_Stenungsund Gtr_Stenungsund Gtr_Stenungsund

Tarragona Tarragona Tarragona Tarragona Tarragona Tarragona

Portalegre Portalegre Portalegre Portalegre Portalegre Portalegre

Ravenna Ravenna Ravenna Ravenna Ravenna Ravenna

Gtr_Teesside Gtr_Teesside Gtr_Teesside Gtr_Teesside Gtr_Teesside

 Estarreja  Estarreja  Estarreja  Estarreja

Schwarzheide Schwarzheide Schwarzheide

Aalesund Aalesund

Barbastro

Number of Co's 

Influenced 131 133 135 137 139 141
Proportion of all Co's 

influenced 78.4 79.6 80.8 82.0 83.2 84.4

Engaged nodes with 

maximum impact

 
Table 3.13 – Location Network Engagement – Most Critical Nodes 

 

These results provide some guidance as to which sets of companies or locations are most 

likely to be able to activate an early-adopter network, and hence have the greatest chance 

of instigating change within the industry. In fact, it is quite possible that alliances 

between these companies might obviate the need for a pervasive early adopter network, 

given that they effectively form a pervasive network themselves. “This much larger 

population is still stable with respect to individual innovators, but once the entire 

vulnerable cluster has been activated, these initially stable nodes become exposed to 

multiple early adopters” (Watts 2003:242). 
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3.3.3  Conclusions & Implications 

With the information available it is impossible to assess which side of the global 

information cascade upper threshold (Watts 2002) the industry lies, but if such cascades 

are still possible, then they will be very rare and almost impossible to forecast. Near this 

upper threshold: 

“global cascades become larger, but increasingly rare…….the system will in 

general be indistinguishable from one that is highly stable, exhibiting only tiny 

cascades for many initial shocks before generating a massive, global cascade in 

response to a shock that is a priori indistinguishable from any other.”(Watts 

2002:5770) 

 

The network formed by the industry is highly resilient to disruption., but with this comes 

the penalty that it is difficult, if not impossible, for innovations to propagate through the 

industry. Studies (Grabher 1993 and Glasmeier 1994 cited in Staber 2001:546) have 

demonstrated that tight linkages become self-reinforcing over time leading to ‘cognitive 

and political lock-in’, and the domination of large core firms in the formulation of 

strategy with the outcome that the existing network hierarchies are preserved. Lock-in is 

a real risk. 

 

An appropriate choice of companies and/or locations allows access to the bulk of the 

industry through the influencing of surprisingly few actors. This small group has direct 

linkages to almost the entire network. But without the cooperation of this set, and the 

core of the most highly connected companies, it would appear to be very difficult to 

initiate industry-wide change.  
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4. Implication for Research & Practice 
 

4.1  Implications for Theory & Application 

4.1.1 Tools, Techniques and Methodologies 

The power of SNA tools and techniques is unquestionable. The ability to describe 

networks in matrix form enables the use of matrix algebra. The resultant ease with which 

the desired information can be generated from a base set of data, and the ability to inspect 

the results using network visualisation software, is enormously powerful.  

 

The small world study exposed some of the shortcomings of the conventional approach to 

SNA when applied out of context. Notionally SNA software can generate path length and 

clustering coefficient information, but there is no established convention for dealing with 

isolates (which have a theoretically infinite path length to the rest of the network), nor 

pendants (for whom the clustering coefficient has no real meaning) in real systems13. It 

would be useful if a standard approach could be established and the limitation 

understood. 

 

Similar issues are encountered when focussing on specific network properties. In 

deciding on which of the multitude of standard SNA measures to use I was minded of 

Scott’s (2000:101) invaluable advice:  

“The choice of a particular characteristic depends on the researcher’s decision 

that a particular mathematical criterion can be given a meaningful and useful 

sociological interpretation. Unfortunately, this is rarely made explicit, and far too 

many researchers assume that whatever mathematical procedures are available 

in social network programs must, almost by definition, be useful sociological 

measures.” 

 

Power-laws provide an extremely powerful diagnostic tool for the identification of 

underlying dynamics and structures. Most correlations are clear and easily identifiable by 

eye, but where they are ambiguous, a readily deployable significance test would be 

invaluable. Standard R2 statistics are unhelpful, as they fail to account for the systematic 

deviation from a trend line that is misapplied.  

 

 

4.1.2 Study Specific Questions 

The fragmentation study identified a convergence in the level of integration as company 

and location size increased. It is no surprise that locations show a higher average level of 

integration than companies (which might invest in production facilities that are not 

internally integrated for some strategic reason), but that there should be an optimal value 

for the degree of integration merits further investigation. 

 

 
13 For this study I chose to only examine the properties of the main component as a pragmatic way to work around the 

first limitation, and I simply ignored pendants when calculating the average network cluster coefficient. 
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The network structure of the industry enabled the discrete dimensions of diversity 

advocated by Stirling (2004) to be given a rigorous interpretation. One of these suggested 

an optimal level of redundancy for the industry14. This might indicate the point at which 

the costs associated with the maintenance of the redundancy equal the benefits in terms of 

robustness (Staber 2001), thus enabling a quantification of these robustness benefits. 

 

The dominant and perhaps most surprising findings of the power-law study was the 

implied growth in the sector (Barabasi & Albert 1999). This is apparently at odds with 

the stagnation of the industry that is generally accepted (Chapman 1991). One possible 

explanation might relate to the on-going merger and acquisition activity within the sector. 

While being a zero sum activity, it does represent growth for the acquiring companies.  

 

Finally, a clear correlation was established between size and dominant network position. 

It would be useful to be able to identify the direction of the causality in this correlation, 

and to make a judgement on the how deterministic network position has been. 

 

 

 

 

4.2 Implications for Stakeholders 

4.2.1 Industrial Stakeholders 

A tentative conclusion of the fragmentation study was an upper limit on the size of the 

fully integrated production fragment that any company can manage successfully, and 

most companies opt for configurations much smaller than this. Whether this conclusion is 

valid or not, it is clear that company growth occurs not through specialisation and 

consolidation, but through the addition of new products at new locations. In fact, the 

more disparate a company’s configuration, the larger it is likely to be. What’s more, the 

largest companies operate relatively more, rather than larger, production facilities, and 

they grow through diversification, building out from their established production chains, 

but at new locations with new products.  

 

The core of the industry exhibits multiple redundant routes for information transfer. This 

structure encourages cooperation and information exchange because it is likely to render 

any attempt to protect knowledge and innovation futile. Further emphasising the point, 

the industry’s structure exhibits small-world characteristics15. The crucial implication is 

that close linkages between geographically distant production facilities are not anomalous 

exceptions – they are normal and common.  Hence, information is easier to find that most 

companies think, nothing stays secret for long, and reputations are quick to spread. 

 
14 The disparity dimension of production diversity appeared to converge as the size of the companies and locations 

increased. This implied an optimal level of redundancy of 3 product streams per product for companies, and 2 for 

locations. 
15 A small world network shows short links between any two actors, despite those actors not necessarily being aware of 

them. As a result the companies (or locations) are likely to have an unrealistic view of how affected they might be by 

actions elsewhere in the system. For example, Enichem at Fawley, UK probably believe that they are largely isolated 

from the actions of Borealis in Schwechat, Austria, but in practice they are likely to be linked through surprisingly 

short ownership and location chains, and have a far greater chance of being affected than they would ever imagine. 
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The strength of the network core confers massive robustness, but this comes at the price 

of significant resistance to change (Kogut 2000). Networks of similar actors, presumably 

with similar knowledge, offer very little in terms of access to new knowledge, ideas or 

information to their participants. However, by allowing a certain amount of local 

autonomy, it is possible that companies use their geographical fragmentation to bypass 

the threshold requirement for corporate level adoption of innovation and change (Watts 

2003). Cumbers et al (2003) identified that innovations are often not so much ‘new to the 

world’ as ‘new to the market’ (i.e. the local competitive environment). 

 

The flip-side of the structure that has emerged is that the entire industry can be influenced 

with the cooperation of only a small set of companies and/or locations - a fact that must 

be of value to suppliers and innovators alike. 

 

One final consideration that industrial stakeholders should consider is the role of long-

distance pipelines, which, according to the power-law results have become the dominant 

factor in location decisions. Coupled with the speculation that the truncation of the 

company size distribution is a consequence of regulator action, a clear implication for the 

largest companies is that a controlling interest in these pipelines represents an accessible 

growth option in the face of anti-trust opposition to manufacturing expansion. 

 

 

4.2.2 Public Sector Stakeholders 

Local government bodies and development agencies should be interested in the swathe of 

results that suggest that fragmentation is a vital ingredient within the industry. The 

implication is that, while the strength of local networks is critical, the quality of long-

range networks differentiates the most successful regions from the rest. The danger of 

lock-in, particularly in regions that are dominated by a single, vertically integrated 

manufacturer are real, but can be actively managed with sufficient foresight.  

 

Public bodies need to be cognisant of the observation that networks have no authoritative 

capability other than reinforcement. “It is interesting that relationship commitment is 

influenced by understanding between the partners rather than by the profitability 

achieved in the relationship” (Holm et al 1996:1048). Development agencies have a key 

role to play in promoting such relationships, but they must be inclusive, and not focus 

exclusively on SMEs.  

 

 
Links of this type are likely to exist between Enichem at Fawley and most other companies at most other locations, and 

should be expected. 
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At a national and European level the implications of the results are worrying. The 

industry has evolved a structure that is highly concentrated amongst a few large 

companies and locations. Consequently, common perspectives, unconsciously embedded 

in the network’s processes, inform the actors’ interpretation of their social environment. 

This results in a reinforcement of the interpretation of group behaviour, “(the causality of 

the probable) which provides the illusion of immediate understanding” (Gorton 

2000:281) and generates a self-sustaining dynamic of misplaced mutual reassurance. 

While robust to any amount of disruption, it is also likely to be highly resistant to change 

and subject to stagnation – indeed according to the threshold model of information 

transfer, it is possible that information and innovation cascades are already impossible.  

 

Nonetheless, the core is so powerful and influential that attacking or excluding these 

companies will inevitably be unsuccessful. 

 

Which brings me to the implications for regulators. Many of the research findings might 

be interpreted as being consistent with the active operation of an oligopoly. Theoretical 

evidence supports the idea that oligopolistic action can protect the structure of a mature 

industry (e.g. Chapman 1991). This is the critical point, it does protect the industry which 

would otherwise disintegrate under uncontrolled competitive pressure, and regulation 

might prove counter-productive. We have learned that behaviours become encoded in the 

structure itself over time (Kogut 2000), so, if an oligopoly is operating (and the research 

methodology cannot demonstrate this either way) it might not be deliberate, and in any 

respect would prove extremely difficult to influence.  

 

Regulators might also give some consideration to the origin and implication of the 

truncation of the company size distribution in the power-law study. The absence of a 

similar truncation of the production web size distribution, despite the North European 

ethylene and propylene grids (which yield the enormous outlier in the data) implies that 

long-distance pipelines mitigate the constraints that otherwise restrict growth. 
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5. Conclusions 
 

This work clearly demonstrates the validity of a methodology that considers a well 

defined industrial sector as a network that exists across a disparate set of geographical 

scales. The tools of social network analysis lend themselves, with careful interpretation 

and consideration, to an economic and industrial context and prove invaluable. 

Nonetheless, there is scope to improve and enhance their usability as has been described.  

 

The model that emerges from both the theory and the results of the petrochemicals study 

is of a series of local networks where intense formal and informal linkages facilitate 

information and knowledge exchange and innovation. The critical feature though, is that 

large, multinational corporations enable the transfer of new capabilities between 

locations, thereby generating new opportunities for innovation within the locations 

themselves. This gives large corporations a legitimate role in the development of regional 

agglomerations, but in a way that forces a consideration not only of the quality of the 

local networks, but also of the linkages to the wider and more geographically dispersed 

industry. The ability of the regional clusters to learn from their multinational corporations 

becomes a critical factor (MacKinnon et al 2002). 

 

I found that the form and structure of the network was consistent with that which is 

suggested by a co-evolutionary interpretation of industrial sectors and regions. In doing 

so, I believe that I have been successful in demonstrating the applicability of network and 

co-evolutionary theories to mature industries, and the importance of considering local and 

distant linkages together.  

 

Fragmentation is one of the methods utilised to generate the necessary levels of diversity 

for effective learning and evolution. But this fragmentation also creates a network of 

interconnected companies and locations. If the companies indulged in vertical integration 

at single-owner dominated locations, no such network would exist. It is clear from the 

power-law study that connectivity is seen as attractive within the industry. This is clear 

evidence that existing connectivity is an important factor in making location decisions. 

Thus local agglomeration is promoted, the level of fragmentation is enhanced, and the 

network develops further. 

 

Chapman (1991) identifies a mechanism for the diffusion of information along two 

interrelated dimensions: between competing firms and from one geographical location to 

another. It is my contention that internal company resources and local geographical 

resources provide a two dimensional search lattice (Watts, Dodds & Newman 2002) 

within the industry, creating an environment more conducive to learning and problem 

solving than a single organisational hierarchy.  

 

There are no examples of companies that have grown to significance through a process of 

specialisation or local vertical integration. Given the multitude of reinforcing positive 

feedback loops that have generated the current industry structure, it is difficult to see how 

or why such a strategy might be more successful in the future. 
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This work potentially provides a basis for future research. A comparative study on a 

sector with a different structural form (e.g. the automotive sector in which the critical 

linkages might be expected to be between the first-tier suppliers) would provide an 

invaluable insight into the specificity of my findings, and of the methodology and tools 

themselves. There is also a need to demonstrate the operation of the hypothesised self-

perpetuating behavioural and cultural dynamics that underpin much of the theoretical 

basis of the work described in this paper. Finally, it is only through a formal longitudinal 

study that many of the inferences can be properly tested. 
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